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I. Phys. A: Math. Gen. 21 (1988) 1137-1156. Printed in the U K  

Stability of bound states for (1 + 1)-dimensional non-linear 
scalar fields 
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? Research Center, Bielefeld-Bochum-Stochastic, Bielefeld University, D-4800 Bielefeld 1, 
Federal Republic of Germany 
$ Universidad Complutense de Madrid, Ciudad Universitaria, Madrid 3, Spain 

Received 12 January 1987, in final form 26 October 1987 

Abstract. We study the stability problem for bound states of (1 + 1)-dimensional scalar 
fields considering different definitions of stability. Sharp stability and instability conditions 
for Liapunov stability are established by improving the Shatah-Strauss formalism and a 
recent technique of Grillakis, Shatah and Strauss based on an analysis of the linearised 
operators. The linear dynamical stability is investigated for the first time and a sharp 
stability condition is obtained. Explicit results for the regimes of stability and instability 
are given for power-like self-interactions and for the 44-&6 model. 

1. Introduction 

In this paper we study the stability of bound states of the (classical) non-linear 
Klein-Gordon equation ( NLKG) 

( NLKG)  # J f f  - #Jxx - g( I #J I2MJ = 0. 

By a bound state we mean a solution of the form 

#J(x, t )  = eiWfu,(x) 

with w real and u,(x) vanishing in a suitable way as x + i o o .  

stability used in the literature. 
Our aim is to investigate the stability problem for the two following definitions of 

1.1. Liapunou stability 

This definition of stability means that any initial datum near a bound state of the field 
equation gives rise to a solution which remains close to the bound state for all times 
with respect to a specified function space metric. Since (NLKG)  is gauge invariant, i.e. 
u,(x) exp[i(wt+@)] is a solution for all @ER, we have to study the stability of this 
solution set ('orbit'). 

We obtain sharp stability and instability conditions for bound states of ( N L K G )  by 
improving the Shatah-Strauss formalism. 

For space dimensions N 2 2, Shatah and Strauss proved that if the action considered 
as a function of the frequency w is convex (concave) the bound state of lowest 
energy-obtained by a minimisation problem in H'(RN)-is stable (unstable) [ 1,2]. 

0305-4470/88/051137 + 20$02.50 @ 1988 IOP Publishing Ltd 1137 
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These ideas were generalised and extended to abstract Hamiltonian systems in a 
recent paper by Grillakis et a1 [3]. They proved the stability/instability result by 
investigating the linear operator associated to the quadratic from given by the second 
(constrained) derivative of the energy functional. Let us briefly describe the main ideas. 

For the stability proof the main step is to show that the bound state considered 
minimises the energy on the manifold of constant charge if and only if the action is 
a convex function of the frequency w. 

Instability is proven by construction of a functional in a neighbourhood of the 
'orbit' of a bound state which is strictly monotone on the trajectories governed by the 
evolution equation. 

Grillakis et a1 [3] showed that the local minimum property of the energy is both 
necessary and sufficient for stability. Thus the convexity criterion is equivalent to the 
energetic stability criterion for bound states of lowest energy. 

In 0 9  2 and 3 we improve these different versions of stability proofs for (NLKG) .  

In § 2 we introduce the notation and recall a well known result of Berestycki and Lions 
[4] concerning the existence of bound states. We have that there is always a unique 
bound state satisfying the boundary conditions. 

Then we extend the previous works of Shatah and Strauss [ I ,  21 to the case where 

for some p > 0. This extension relies on two facts. 
First, the bound-state solutions satisfy a minimisation principle on H'(R) which 

is crucial for applying the techniques presented in [ 1,2]. Finally, the scaling properties 
of these special non-linearities replace the dilations used in space dimensions N 3 2. 

In § 3 we present a detailed analysis of the linear operators related to the second 
constrained variation of the energy. The main steps of this part were done in our 
previous work [5] for the first time. We prove the applicability of the results obtained 
in [3] for a wide class of non-linearities. Nevertheless the analysis presented here is 
somewhat different. 

1.2. Linear dynamical stability 

A localised solution is said to be dynamically stable (in the sense of Liapunov) if small 
perturbations do  not destroy it, i.e. one studies the behaviour of 

The first-order approximation leads to a linear evolution equation for ~ ( x ,  t ) .  Now 
U, is said to be dynamically stable if 1 ~ ( x ,  t )  1 remains bounded for all t .  

A precise mathematical treatment of the linearised evolution equation was given 
by Weinstein in the case of bound states of non-linear Schrodinger equations [ 6 ] .  Our 
analysis parallels this method. 

The main step for proving stability is to find a suitable vector space which is 
invariant under the time evolution and on which one can 'control' the pertubation. 

In § 4 we prove that if the action considered as a function of w is strictly convex 
then there exists only one unstable direction and U, is stable for all other pertubations 
1). To our knowledge this result is completely new for the Klein-Gordon equation 
and patches together the different definitions of stability. 
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Finally, in 0 5 we present the following examples and study their stability properties 
by explicit calculations to give regimes of stability and instability: 

(i) g ( p )  = - 1  + p p  P’O 
( i i )  g ( p ) = - 1 + p + S p 2  s>o 
(iii) g ( p )  = -1 + p + 6p2 6 <o. 

2. Stability of bound states: the Shatah-Strauss technique 

2.1. Dejinitions and notations 

For the stability analysis we will need several function spaces. We employ here the 
notation: 

H : ( R ) = { u  E H’(R)~,, is symmetric, i.e. u(x)  = U(-x)} 

L ~ ( R )  = { U  E L‘(R) I,, is symmetric]. 

x = Hf(R)O LS([W) 

The function space in which we will work is 

the space of complex valued functions of r = I x 1, which belong to H ’ ( R ) O  L*(R). An 
element of X is denoted by U = [ U , ,  u 2 ] .  X is regarded as a real Hilbert space with 
the inner product. 

( U ,  u ) ~  = R e  V u i V ~ i + u l B , + ~ 2 B 2 d ~ .  1. 
Let X *  be the real dual space of X .  ForfE X *  and U E X the value off at U is denoted 
by (f; U ) ;  if is given by (if; U)= -(A iu). We define an identification I :  X +  X *  as 
follows: f =  Z ( u )  E x*, 

(f; U) = Re ulBl + u2B2 dx. 

Furthermore we define a map J :  X + X *  

acting on U as a column vector. 
Setting G ( p )  = j,” g ( s )  ds we can express the physical quantities as follows: 

r 

Q(u)=f(Ju , iu)=Im G,u,dx J, (charge) 

- I u ~ / ~ + I V U , I ~ - G ( / ~ , / ~ )  dx (action). (2 .6)  
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Furthermore we need the functionals 

K ( u )  = +  I U ~ ~ ’ + I V U ,  1 2 +  G( I U ,  1’) dx 1. 
I, R ( u ) =  - 1  u2I2+ / V U ,  1’-g( 1 U I  1’) 1 ~ 1  I’dx. 

Under suitable assumptions on G all these functionals are of class C’ on X .  

2.2. Standing waves 

We now discuss the existence of standing waves and their dependence on the frequency. 
Let g :  R +R be a differentiable function satisfying g ( 0 )  = -1. The non-linear Klein- 
Gordon equation ( NLKG) 

4 J r r  - 4 x x  - g(  I 4J 1’14 = 0 

- U ” =  g,( I U /’)U 
has a non-trivial standing wave solution with frequency w provided 

where gu( I U 1’) = g (  1 U 12)+w2 has a non-trivial solution ( ’  denotes differentiation 
WRT X). 

We require g ,  to satisfy the following conditions: 
g, (0) < 0. ( 2 . 9 ~ )  

Vg = l ( w )  such that G,(l) > 0. (2 .9b)  
Then we have the following theorem. 

Theorem 2.1. The boundary-value problem 

- U ” =  g,( I U I’)U (2.10) 

lim u(x)=O 
X - i S C  

has a unique positive solution U, up to translations of the origin and this solution 
satisfies (after suitable translations of the origin) 

(i)  = U,(-X) X € R  

(ii) U L ( X )  < o  x > o  

(iii) U, € C’(R) 

(iv) u,(x) has exponential decay at infinity. 

Proof: The proof relies on a simple phase plane analysis using the ‘constant of motion’ 

u”(x) + G,( I U ( X )  1’) = 0 

for all x E R (see [4]). 

Let U, be a solution of (2.10) with g ( p )  = - I + p p  for some p > O .  Then U, satisfies 
the following extremum principles. 



Bound states for ( 1  + t)-dimensional scalar fields 1141 

Theorem 2.2 

(i)  U, maximises the functional 

(2.11) 

on H ’ ( I w ~ )  

(ii) U, = [U,, iwu,] satisfies 

I u’ I2+ ( 1  - w 2 )  I u 1’ dx = I u: 1 2 +  ( 1  - w 2 )  I u, 1’ 

(iii) L( U,) = inf{L( U, iwu) : 0 # u E H i ,  R(  u, i w u )  = 0} 

= inf{L( U, iwu) : 0 # U E H : ,  R( U, iwu)  < O}. 

Proot For part (i) we refer to Lieb [7]. Part (ii) is a consequence of (i). For (iii) we 
note that the set 

{U E H I ,  u ZO, R(u ,  iwu)<O) 

is bounded away from zero in X since 

~ ( u ,  iwu) c1 1) U l l $ 1 -  c2 /I U IIzHp:2 
for constants c 1 ,  c2 > 0. Using the lower 

Proposition 2.3. Let U, be the solution 
[U,, iwu,]. Then we have the following 

~ l f ( x ) + G , ( l ~ , ( x ) l 2 ) = 0  
c c 

semi-continuity of R we conclude the proof. 

of (2.10) obtained in theorem 2.1 and U, = 
identities: 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

It can be seen that W H U ,  is a C2-mapping into H I @ ) .  

of 
Therefore we have a C2-curve U, = [U,, iwu,] in X which is a non-trivial solution 

DE(u,) = wJ i U, 

where D denotes the FrCchet derivative in X .  
Now we consider the action L(u,) as a function of the frequency w and define 

(2.17) 

We shall always take w > 0. 
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Lemma 2.4. 

(i) d ( o )  is a positive decreasing function of w and 
d ’ ( w )  = -Q(u,) .  (2.18) 

(i i)  For fixed wo let u ( h )  be a C 2  curve such that u ( 0 )  = uw, and Q( u ( h ) )  = Q(u,,). 
Then we have 

where 

Proof: Obvious, see [2]. 

2.3. Local minima and saddle points of the energy 

From now on we restrict ourselves to the monomial non-linearity 

g b )  = -1  + P P  

for p > 0. Standing waves exist for w E (0, 1 ) .  
The extremum property of U, shown in proposition 2.2 is the heart of the technique 

presented below although some statements are also valid for general non-linearities. 

Theorem 2.5. d ( w )  is convex at wo if and only if the energy functional E restricted to 
the manifold 

M,..{uEXIQ’(U)=Q(U,,)} 

has a local minimum at U,, 

Proof: For the necessity we observe that for any U = [U,, u2] and any w we have the 
inequality 

E ( u ) >  L ( u , , i w u , ) + w Q ( u ) .  (2.20) 

For U E MO in a small neighbourhood of U, one can find a value of w such that 

/ V u ,  l 2  d x +  ( 1  - w 2 )  

By proposition 2.2 

I U, dx a I U, dx 

and therefore (2.20) becomes 

E ( U )  3 d (U) + WO( uu0) = d ( U )  - w d’(  W O ) .  

Since d ( w )  is convex at wo (2.21) implies 

E ( u ) Z d ( w O ) - ~ o  d ’ ( u o ) = E ( u , )  

which proves that E I M M 0  has a local minimum at U,. 

(2.21) 

(2.22) 
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For the second part of the proof we define a curve U + 4” by 

+,(X) = A(w)u,(x) 

where 

1143 

(2.23) 

h ( w ) =  (ay - 

= -wd’( W O )  +;A *( W )  U :  + ( 1  - w ’ )  U’, dx -4 U:+’ dx. 

By (2.13) and (2.14) we observe 

( 1  - U ’ )  U’, dx =- U?+’ dx (2.24) i, 2,”+2 I, 
and therefore 

E (  4,) = -W d’ (  W O )  +f d ( w )  s -U d’ (wo)  + d ( o ) .  
P 

(2.25) 

Since E I M o  has a local minimum at U,, we have 

E ( + , ) a  E(u,,)=-wo d’ (wo)+d(wo) .  (2.26) 

Combination of (2.25) and (2.26) yields that d ( w )  is convex at wo.  

Remark 2.6. An analogous theorem for general non-linearities will be obtained in 8 3 
by analysis of the linearised operator (see proposition 3.3). 

2.4. Stability and instability of bound states 

The Cauchy problem for (NLKG) can be written as follows: 

u(0) = U0 E x. du( t )  
dt  

J -  = DE( U (  t ) )  (2.27) 

There exists (at least) a unique weak solution of (2.27) (see, e.g., [8]) and we have 
two conserved quantities, the energy and the charge: 

E ( u ( t ) )  = E(u0)  

Q ( u ( t ) )  = Q(u0). 

Now we state the stability/instability result for non-linearities ofthe form g ( p )  = -1 + pp 
for some p > 0. 

Theorem 2.7. 

(i)  Let d”(wo)>O.  Then {e”u,,} is stable. 
(ii) Let d”(wo)  CO. Then {eieu,,} is unstable. 
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The proof of this result runs along the lines of the papers by Shatah and Strauss [ 1 ,2 ]  
using basically the extremum principle (theorem 2.2) and the energy stability criterion 
(theorem 2.5).  

The explicit determination of d ( w )  for g ( p )  = -1 + pp is given in El 5. 

3. Stability of bound states: analysis of the linearised operators 

In this section we want to present a more detailed analysis of the critical points of the 
energy functional on MO by direct computation of the second derivative of the con- 
strained functional and by a spectral analysis of the associated linear operators. Using 
these results we will prove the stability result for general non-linearities satisfying 
(2.9a, b ) .  

Let u ( h )  be a C’ curve in MO such that u ( 0 )  = uu0. Then by (2.19) in lemma 2.4 
we have 

where 

(3.3) 

(3 .4 )  
and ( , ) denotes the usual inner product in L2. 

Since dQ(u(A))/dh = 0 the pair x1 and y ,  has to satisfy the relation 

( U w o ,  w o X 1 + ~ 2 ) = 0 .  (3 .5 )  

In addition we need the ‘modified linearised operator’ introduced by Shatah and 
Strauss [ 2 ] :  

Then it is easy to prove the following. 

Proposition 3.1. Using the above notations we have 

with equality if and only if y ,  = 6u, for some S E R and x2 + woy, = 0. 
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Since we are interested in the sign of d2E/dh2 at A = O  it is enough to consider the 
quadratic forms defined by the self-adjoint operators T (or H)  and L. We then have 
the following. 

Proposition 3.2. (i) L is a non-negative operator on H’(R) and Ker L = span{u,}. 
(ii) H has exactly one negative eigenvalue and 

Ker H = span{u:,} on H’((W).  

Proof: Since Lu, = 0 and U, > 0, uuo is the (non-degenerate) ground state of L which 
proves (i). 

To prove (ii) we observe Hu:, = 0. Since U:, has a single node at x = 0 we see by 
oscillation theory for ODE that zero is the second eigenvalue of H. The second part 
of the proposition is proven in [ 6 ] .  

By proposition 3.1 we obtain the lower bound 

with equality if and only if y2 = 6u, for some 

S E R  and x 2 = y , = 0  or x2 = -way, = U, 

A detailed study of the linear operator T is given in [ 5 ] .  Therefore here we only repeat 
the most important results. 

Proposition 3.3. ( i )  a = inf[ , , ,=,  ( g ,  Tg) is attained for a g*E L2(R) and (Y = O  iff 

(ii) Let d ” ( w o )  PO. There exists a positive constant C ( w o )  such that for any 
,‘’(WO) 3 0. 

g E L m  

(8 ,  Tg) 3 C(wo)(g,  g) iff d”(wo)  > 0. (3.9) 

As a consequence of proposition 3.3 we obtain for any C2 curve u(A) in MO 

(3.10) 

Proposition 3.4. If d ” ( w o ) < O  then there exists go€ Ls such that (go,  Tgo)<O. 

Proof: Obvious. 

Therefore we can apply the technique used by Grillakis et ai [ 3 ]  to prove the following. 

Theorem 3.5. (i)  Let d ” ( w , )  > 0. Then {e’’u,,} is stable. 
(ii) Let d”(wo)  < 0. Then {eiou,,) is unstable. 
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An easy extension [3] leads to the following. 

Theorem 3.6. {eieuw0} is stable if and only if d ( w )  is convex in a neighbourhood of wo.  

Idea o f a  proof: (See [3] for details.) For the stability proof one uses (3.10). Let { U , }  

be a sequence of initial values of problem (2.27) u,(O)+ uw0eie in X .  Then E ( u , ( t ) ) +  
E(u, )  by the conservation of energy. Doing a Taylor expansion of E - w o o  we see 
that uwo cannot be unstable. For the proof of instability one constructs a kind of 
Liapunov functional using the fact that U, is not a local minimum of the energy E 
subject to constant charge Qo. 

4. The linearised evolution problem 

In this section we study the linear dynamical stability of bound states. This kind of 
stability can be implemented if we add to U, eiw' a small fluctuation, i.e. we study the 
behaviour of 

4(x, 1 )  = ( u w ( x ) +  77(x, t ) )  elw' (4.1) 

77,,+2iwn, -77xx-g,(u2,)77 -g:(u:)u2,(77+7j)=o. (4.2) 

as a solution of (NLKG).  The first-order approximation leads to 

Now one calls U ,  stable if I r ] (x ,  t )  1 remains bounded for all t .  For one space dimension 
it is therefore sufficient to prove the HI-boundness of 7) since H'-boundness implies 
boundness in L". Therefore let 

I/ 77 (x, 0 )  ) )  HI + 11 77, (x, O) 1) L2 < E .  

Our aim is to prove the stability for almost all symmetric pertubations [ T ,  77,] if d ( w )  
is convex. 

Now it is expedient to split 77 into its real and imaginary parts. We set 1) = (Y +iP. 
Then [ T ,  7 7 1 ]  E X is equivalent to 

( ( Y , ( Y I , p , p t ) T ~  Y = H : X L : X H : X L ; .  

Using the definitions of the operator H and L in (3.3) and (3.4) we obtain the real 
system 
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Then the energy considered as a functional on Y is given by the following quadratic 
form 

(4.5) E = (a , ,  a , ) + ( a ,  HQ)+(PI, P r ) + ( P ,  LP)= Q ( y )  

y = ( a ,  at, PI P J T E  Y.  

where 

We would like to show that Q1j2 defines a norm which is equivalent to the usual norm 
/ I .  11 on Y. Indeed this will imply the linear dynamical stability of the considered 
bound state. 

We rewrite (4.4) as the differential equation 

d y l d t  = Ay (4.6) 

with initial value y ( 0 )  = y o €  Y where A denotes the matrix operator in (4.4). 

Q”’ is equivalent to the norm I /  / I  
Following an idea of Weinstein [6] we construct a subspace M of Y on which 

Let 
on Y. 

N , ( A ) =  6 N ( A ” )  
n = l  

be the generalised nullspace of A. We set 

M = Y n [ N , ( A * ) ] l  (4.7) 

where 1 denotes orthogonality with respect to the inner product of Y and A* is the 
adjoint of A.  

Let us first determine the elements of N , ( A )  and N,(A*).  

Proposition 4.2. Let d”(o) f 0. We have N,(A)  = N ( A )  U N ( A ’ )  and N,(A*)  = 
N ( A * ) u  N(A*’) .  N , ( A )  and N,(A*) are spanned by the following two-dimensional 
biorthogonal sets. 

e, = ((40, U,, (4.8a) 

e,= ( - 2 o ~ - ’ u , ,  O , O ,  -u,)~ 

f l=(O,Z~H-lu , ,  - ( 1 + 4 w * H - ’ ) ~ , , O ) ~  

(4.8b) 

(4.9a) 

(4.9b) 

Proof: Let W = ( w l ,  w,, w3, wJT€ Y, then from 

W2 

O = A W = [  -Hw, w4 +2ww4 

-2ww4 - Lw, 
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it follows obviously that w, = w4 = 0. Since H is invertible on the space of symmetric 
functions we have also W ,  = 0. Lw, = 0 implies w3 - U,. Therefore N ( A )  is spanned 
by e , ,  i.e. N ( A )  = (e,). If 0 = A’ W we obtain the system 

(4.11a) 

(4.1 1 b) 

( 4 . 1 1 ~ )  

(4.11d) 

Equations (4.1 1 a, d )  imply Lw4 = 0, (4.1 1 b, c) yield w2 = 0 and Lw, = 0 which implies 
that N ( A 2 )  is spanned by e, and e,, i.e. N ( A 2 )  = (e, ,  e,). A3 W = 0 yields 

0 = -( H + ~ w * ) w ~ - ~ w L w ~  ( 4 . 1 2 ~ )  

0 = H ( H + 4 ~ ’ )  w - 2w ( H + 40’ + L) ~4 (4.12 b)  

0 = -(L+4w3) w ,+~oJHw~ ( 4 . 1 2 ~ )  

0 = L( L+4w3)w3 + 2w( H +4w2+ L) w,. (4.12d) 

0 = -Hw, + 2 ~ ~ 4  

O =  -( H +4w2)w2 - 2wLw3 

0 = -2ww2 - Lw, 

0 = 2wHwI - (L  + 4 ~ ’ )  ~ 4 .  

Equations (4.12b, c) imply 

( H  +4w2)( L+4o2)w4 = 4w2(H +4w2 + L)w,. 

Therefore HLw, = 0 which yields W, - U, and 2wH-’w4 = w, . Equations (4.12a, d )  give 

( L+4w2)(H +4w2)w2 = 4w2( H +4w2 + L) w2 

i.e. LHw, = 0. But then 

2wLw3=A(1+4w2H-’)u,. 

Taking the L2 product with U, we obtain O =  -Ad”(@) (see [ 5 ] ) ,  which implies A = O  
or w2 = 0. Then w3 - U,. Therefore N ( A 3 )  is spanned by e, and e, and N ( A 3 )  = N(A*).  
An easy consequence is N ( A ” )  = N ( A 2 )  for all n 2 3. Since H and L are self-adjoint 
we have A* = AT where AT denotes the linear operator associated to the transposed 
matrix. Since 

we see immediately that N ( A * )  is spanned by f2. The equation A** W = 0 leads to 
the system 

(4.13 a )  

(4.13 b) 

( 4 . 1 3 ~ )  

(4.13d) 

By ( 4 . 1 3 ~ )  we see w,=2ww4. Thus (4.13d) implies Lw,=O. By (4 .13~)  we obtain 
2ww,+ w, = Au, which yields - Hw2= 2wAu, by (4.13b). Therefore N(A*’ )  is spanned 

0 = - Hw, + hHw,  

0 = -( H + 4 ~ ’ )  ~2 - 2ww, 

0 = -2wLw2 - Lw3 

0 = 2ww,  - (4w2 + L) Wq * 

by fl and fi. 
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Finally, computing A*3 w = 0, we obtain 

0 = H (  H +4w2) w2+ 2wHw3 

O =  -( H +4w2) ~1 + 2 w (  H +4w2+ L ) w ,  

0 = - 2 ~ L w ,  + L( L + 4 ~ ' )  wq 

0 = - ( L + 4 w 2 )  w3 - 2w( H +4w2+ L )  ~ 2 .  

( 4 . 1 4 ~ )  

(4.14b) 

( 4 . 1 4 ~ )  

(4.14d) 

Equations (4.14~1, d )  imply 

( L  + 4w2)( H + 4w2) w2 = 4w2( H + 4w2 + L )  w 2 .  

Therefore w2 = AH-Iu, .  On the other hand (4.14~1, d )  yield L( w,+2ww2) = 0. There- 
fore these elements of N ( A * 3 )  are generated by f,. By equation ( 4 . 1 4 ~ )  we have 

~ W W ,  = ( L  + 4w2) w.4 - A u ,  . 
Inserting this into (4.14b) we obtain 0 = -HLw,+ A (  H +4w2)u,. Using the invertibility 
of H and taking the L2 product with U ,  we obtain 0 = - h d " ( w ) .  Therefore A = 0 and 
Lw, = 0. We see that these elements are generated byf,. Therefore N(A*2)  = N(A*')  = 
N(A*") .  The orthogonality relations (4.10) are obvious. Thus proposition 4.2 is proved. 

By the biorthogonality of N,(A)  and N,(A*) we have 

Y - M @ N , ( A ) .  (4.15) 

The stability of N,(A)  WRT to the evolution of the system (4.6) is described in the 
following proposition. 

Proposition 4.3. Let W (  t )  be a solution of (4.6) with W ( 0 )  E N,(A) .  Then W (  t )  E N,(A)  
for all t and 

(4.16) W ( t )  = d " ( w ) - ' [ (  W(r) , f1)e1+( W t ) , f 2 ) e 2 1  

and especially 

( W ( t ) , f 2 )  = (W(O) , f2)  
( W ( t ) , f 1 ) =  (W(O) , f2 ) t+ (W(O) , f , )  

where ( , ) denotes the usual inner product of (L2) , .  

( 4 . 1 7 ~ )  

(4.176) 

ProoJ: The representation (4.16) is clear from the biorthogonality of the sets { e l ,  e2} 
and { f 2 , f 2 > .  

Now let W (  t )  = c l (  t ) e ,  + c2( t ) e2 .  Inserting this expression into (4.6) yields 

C,( t ) e l  + C2( t ) e 2  = c 2 ( t ) e ,  

which implies 

c 2 ( t )  = c2(0) and c , ( t )  = c2(0) t  + c,(O). 

This is precisely (4.17a, b). 

Thus if W ( 0 )  has a vanishing component in f 2 ,  then so will W (  t ) .  As a consequence 
of proposition 4.3 we have the following corollary. 

Corollary 4.4. M is an invariant subspace for Q( t )  = exp( tA) .  

Next we show that the restriction on M of the quadratic form Q defines a norm which 
is equivalent to /I [ I y  on M. 
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Theorem 4.5. Let y = (a ,  a,, P, 
stants Kl  and K 2  such that 

M. If d ” ( w )  > 0, then there exist positive con- 

Kl IIY II’YS Q ( Y )  S K Z I I Y  11: (4.18) 

or equivalently 

K(ll a ll ’ H I  + I/ a1 I:+ II P II’HI+ II Pt 11:) 
s E ( a ,  at, P, P I )  

s K2( II a IILI + II a, Il:+ II P Il’Hl+ I II Pt 113. (4.19) 

ProoJ The proof of the existence of an upper bound is easy and it holds for any y E Y. 
To prove the lower estimate we have to use the orthogonality relations (y,fl) = ( y , f 2 )  = 0 
which hold for any y E M. They can be written as follows: 

( 4 . 2 0 ~ )  

(4.20b) 

(a , ,  2wH-’u, )  - (P ,  ( 1  + 4 w 2 H - ’ ) u , )  = O  

( 0 , 2 w % J  ) + ( P  f 3 U, 1 = 0. 

From the results of 0 3 we know that H and L are self-adjoint operators satisfying 

( a ,  Ha)d -c 11 (Y [ [ ’ H i  

(P ,  LP) 3 0 

for any a, P E H’(R) and some C > 0. 

(4.21 a )  

(4.21 b )  

By the orthogonality relations (4.20a, 6) we have 

(aI, al )+(P,  L P ) 3 ( P , S P )  ( 4 . 2 2 ~ )  

(Pt 9 PI 1 + ( a, (4.226) 1 3 (a ,  Ta 1 
where S and T are linear operators defined by 

( ( 1  + 4 w 2 H - ’ ) ~ , ,  a )  

S = L +  ( 1  + 4w2H-’)uW 
4w2(H-lu , ,  H- lu , )  

(4.23 a )  

(4.236) (%, 
(uw, U,) 

T = H + 4 w Z -  U,. 

In S 3 (or [ 5 ] )  it is shown that if d ” ( w )  > 0 then 

(a ,  TO) 3 C ( w )  II a llLl 
holds for a positive constant C ( w ) .  

(4.24) 

If d ” ( w )  > 0 by using similar methods one can also prove that for all P E H ’  we have 

(P ,SP)~&) I IP l I2 ,~  (4.25) 

for a positive constant E ( @ ) .  
The idea leading to proof of (4.25) can be stated as follows. Obviously S is 

non-negative. One shows as in [ 5 ]  that if the infimum on the unit sphere of (P ,  SP)  
is zero then it is attained by some P* E HI.  Applying the Lagrange multiplier theorem 
we obtain Sp* = 0. Then we cannot have ( p * ,  ( 1  +4w2H-’ )u , )  = 0 (by contradiction). 
But taking the inner product with U, will lead to d ” ( w )  = 0 which is impossible. Thus 
we have a non-zero infimum which implies (4.25).  
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Choosing E small enough we obtain the desired lower estimate. 

Now we are in a position to prove our stability result. 

Theorem 4.6. Let d ” ( o )  > 0. Then U, is stable in the sense of linear dynamical stability 
with respect to all pertubations (17, T ~ )  such that (Re 7, Re q f ,  Im 7, Im 7,) E M. 

Roo$ Since M is invariant under the linear evolution equation by corollary 4.4. the 
pertubation will stay for all times in M. 

Thus we have an HI-control by the conservation of the energy (theorem 4.5 and lemma 
4.1), i.e. 

lIT(X, t)IIzHl+IITf(X, t)II:’<K’E(T, 77,)<~(1177(X,0)IIZH’+IIT,(X,0)112L2). (4.26) 

Since ~ ( x ,  t )  is bounded in H’(R) for all t ,  ~ ( x ,  t )  is bounded in L“ (it is even Holder 
continuous with exponent j) for all t by the inequality 

I T ( X ,  t ) 1 2 s  I /  T ( X ,  t )  I I z H l ~  CIIT(X, 0,IlzH’ (4.27) 

which proves the theorem 

Finally we want to explain why it is rather natural that M is the space of ‘stable 
pertubations’. 

For this purpose we consider the elements of the complementing space N , ( A )  in 
Y. For the elements e ,  and e2 we have 

Q ( e i )  = 0 ( 4 . 2 8 ~ )  

Q ( e d = 4 u 2 ( u , ,  H - ’ U ~ ) + ( K , , ,  U,) 

= - d “ ( o )  < 0 if d ” ( w ) > O .  (4.286) 

Perturbations proportional to e ,  remain constant while perturbations in the direction 
of e, grow linearly in time. 

These properties are closely related to the spectrum of the linearised operator of 
the problem defined in ( 3 . 1 )  and ( 3 . 2 ) .  

It is easy to see that zero belongs to the spectrum of the linearised operator which 
comes from the gauge invariance of the non-linear problem. If d ” ( w ) > O  then the 
linearised operator also has some negative spectrum (see also [ 3 ] ) .  

This fact is expressed for the linear problem by (4.28a, b) .  
Physically this situation may be interpreted as follows. The functions 

Icnt+e) (4.29) ccl(x, t ,  8, a )  = u d x )  e 
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form a two-parameter family of bound states for (NLKG).  It is easy to check that the 
time evolution of elements in N,(A)  described in proposition 4.3 corresponds to the 
derivatives o f $  with respect to the free parameters e and R at 8 = 0 and R = w. Indeed 

a* 
an 
-- e,+ re, 

where e, is a tangent at the orbit of U,. Since the linearisation (4.1) considers the 
perturbation in the 'rest frame' of the solitary wave U, exp(iwt+ie), solutions of the 
linearised equation (4.2) in the direction of e ,  remain constant. The derivative of $ 
with respect to SZ corresponds to the first-order approximation of the motion of nearby 
solitary waves with different frequency: 

$( ., 0) = $( . , w ) + (R - w ) 9 I + O[ (R - U ) ' ] .  aa 
To summarise, the time evolution of the elements in N , ( A )  does not come from 

physical properties of the solitary wave itself but from the linearisation procedure. 
Hence physically meaningful perturbations are only in M. In particular, if d"( w )  > 0 
then zero is a local minimum of the linearised energy in M and the unstable direction 
is covered by the secular modes e ,  and e , .  

5. Examples 

In this section we present a number of examples which arise from the applications 
(e.g. ~ 9 1 ) .  

5.1. g ( p ) = - l + p p , p > O  

The equation 

411 - 4 X . x  + 4 - I4 12p4 = 0 (5 .1 )  
admits standing waves d(x ,  t )  = e'"'u,(x) by theorem 2.1 if and only if O S  w 2  < 1. 
U, satisfies the stationary equation 

- u : : = - ( l - w * ) U , + u ~ + ~ .  (5.2) 
We compute d ( w )  explicitly. Note that 

U ( X )  = A - ' / ~ U , ( X / A )  A = (1 - U*)'/' 

satisfies the non-linear ordinary differential equation 
- v + U 2 P + l  

and thus 

d(w) = ( 1  - w 2 ) 1 / p t 1 / 2  d ( O ) .  
Calculating the second derivative of d ( w )  we obtain 
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Applying theorem 2.15 we have the following proposition. 

Proposition 5.1 (i)  If p z- 2 all standing waves are unstable. 

stable if wc < I  w I < 1 ,  where wc = (p/2)’ l2 .  
(ii) If p s 2 the standing waves are unstable if 1 0 1  s wc ; the standing waves are 

Because of the scaling properties of (5.2) we were not forced to calculate the explicit 
representation of U, when studying the stability problem. 

The knowledge of the explicit solutions becomes more relevant for detailed studies 
of the equation and the linearised problem. 

For given p the solution U, of (5.2) has the form 

~ , ( ~ ) = ( p + l ) ” ~ ~ ( l  - w ~ ) ’ / ~ ’  C o s h - ” p p ( l - w 2 ) ” 2 ~  (5.3) 

from which one can calculate directly (the ingredients) of the linearised analysis. 

5.2. g ( p ) = - l + p + 6 p 2 , S > 0  

We consider the non-linear Klein-Gordon equation 

4*1 - 4 x x  + 4 - I4 I24 - 6 I4 14d = 0 

-U; = -( 1 - U ’ )  U, + U’, + sud 
to which corresponds to the standing wave equation given by 

for 0 s  w 2 <  1 .  We rescale (5 .5)  by setting 

w,(x) = A - ’ u , ( x / A )  A = (1  - w2)’12.  

Then w, is a solution of the equation 

(5.7) -w:  = -w,+ w3,+(1 -w2)Sw,. 5 

In order to compute d ( w )  explicitly we have to know the explicit form of w,. By 
integrating (5.7) or by inspection we see that w, has the representation 

( 5 . 8 )  

Next we calculate the charge Q of U, and differentiate with respect to w. We obtain 

w,(x) = 2( 1 + b ( w )  cosh 2x)-’ l2  

where 6( w ) = [ 1 + yS( 1 - w ~ ) ] ’ / ~ .  

(5.9) 
2 Q(%) = w(1 -W2)1’211 w, 112. 

Using 

I/ W, II:=4(.rr/2)1’2b-1’2(w)(62(w) - 1)-1’4PZ!$i(6-1 ( U ) )  (5.10) 

where 

is the associated Legendre function of the first kind we finally obtain 

(5.11) 

Now we state our stability result. 
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Proposition 5.2. There exists U ,  > 0 such that 

( i )  
(ii) d ” ( w )  > 0 if w > U , .  

d“( w )  < 0 if 0 s w < w ,  

As a consequence U, is unstable if 0 S w .s w ,  and is stable if w,  < w < 1. 

Proof. We compute 

Setting l / b ( w ) = c o s  4 ( w )  we have 
1/2  dQ(u,) 

-= (i) cot 4(4 tan 4 + 1 - b2(0) cos2 4). 
dw 

(5.12) 

The right-hand side of (5.12) is strictly increasing in 4. It is negative for small 4 and 
positive for close to cos-’(l/b(O)). This proves the proposition where w,  is 
determined by the equation 

cb(w,) tan cb(w,)+ 1 - b2(0) cos2 4 ( w , )  = O .  (5.13) 

5.3. g(p) = -1 + p + S p 2 ,  s (0 
Again we consider the non-linear Klein-Gordon equation given by (5.4). It is easy to 
see that standing waves exist only in the following range of frequencies 

3 
1 > w 2  > w*2 = 1 +- i fS<--Z 16 

1 6 s  

1 > w 2 s o  i f s > - &  
(5.14) 

Again w, defined by (5 .6)  is of the form 

w,(x)=2(1+b(w) cosh2x)-’/* (5.15) 

where b(w) = [ l  + y 6 ( 1  - w ’ ) ] - ’ ” .  Note that since S < O  we now have b ( o )  < 1. 
We compute 

which yields 

(5.16) 

(5.17) 

Using the above expression for the charge it is easy to obtain the following result about 
the stability of U,. 
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Proposition 5.3. (i)  Let 6 3 -&. Then there exists w, > 0 such that U, is stable for 
w > w ,  and unstable for w s U, .  

(ii) Let 6 <-&. There exists So< -& such that all standing waves are stable 
if S < 60. If 6 = So all standing waves are stable since d ( w )  is convex everywhere. If 
So < 6 < -& there exists a closed interval of unstable frequencies. 

ProoJ: As in the proof of proposition 5.2 we obtain 

coth I)( CC, tanh $ + sinh2 + + Y S  cosh’ (I/) (5.18) 
dw 

where 

Consider now f (+) = + tanh il, - 1 + (1 + yS) cosh’ +. 

f ( * ) < O  as + + O  i.e. w + 1 

If 6 > -& we have 

i.e. w + 0. 

If 6 = -A we have f(+) = + tanh + - 1 and we conclude 

f ( * ) < O  a s++O i.e. w + 1 

f ( * ) > O  a s $ + m  i.e. w + 0. 

If S < -A then 1 +&S < 0 therefore 

a s++O i.e. w + 1 

f ( I L ) < O  a s++cc  i.e. w + w* 

For 6 large enough, f ( + )  is everywhere negative. Otherwise there exists an interval 
on which f($) is positive. Thus we prove proposition 5.3. 

We compute So numerically. So is determined by the equations f ( cL0) = 0 andf’( &) = 0, 
i.e. 

-IL0 tanh +o+ 1 - l ( l + ~ S o )  cosh’ I L O = O  

-tanh IL0 -~ - 2( 1 + ySo) sinh +h0 cosh +bo = 0. 
(5.19) 

I L O  
cosh2 i,b0 

Eliminating So leads to the equation 

2+, sinh rL0 - 3 sinh t,bo cosh +Lo - i,bo = 0. 

Defining xo = 214, we obtain by simple transformations 

xo cosh xo - 2x0 - 3 sinh xo = 0 

which we solve numerically using Newton’s method. This yields 

I/+,= 1.717 9 2 . .  . . 
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Using this value we compute 

so = -0.201 34.  . . 
and 

~,=0.181 325..  . 
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